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The well-known Fermi-Pasta-Ulam �FPU� phenomenon �lack of attainment of equipartition of the mode
energies at low energies for some exceptional initial data� suggests that the FPU model does not have the
mixing property at low energies. We give numerical indications that this is actually the case. This we show by
computing orbits for sets of initial data of full measure, sampled out from the microcanonical ensemble by
standard Monte Carlo techniques. Mixing is tested by looking at the decay of the autocorrelations of the mode
energies, and it is found that the high-frequency modes have autocorrelations that tend instead to positive
values. Indications are given that such a nonmixing property survives in the thermodynamic limit. It is left as
an open problem whether mixing actually occurs, i.e., whether the autocorrelations vanish as time tends to
infinity.
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By the “standard” Fermi-Pasta-Ulam �FPU� phenomenon
we mean the celebrated one observed for the first time in the
year 1955 �1�. Namely, in numerical integrations of the equa-
tions of motion for a chain of particles coupled by weakly
nonlinear springs, equilibrium is not attained within the
available computational time and a kind of anomalous pseu-
doequilibrium does instead show up. This is observed at low
energies for initial data very far from equilibrium. The quan-
tities studied were the energies Ej�t� of the normal modes of
the linearized system �as defined in �1��, and their time av-
erages Ej�t� were found to relax each to a different value
rather than to a common one, against the equipartition prin-
ciple �see especially the last figure of the original FPU re-
port�.

It was later found by Izrailev and Chirikov �2� that the
phenomenon disappears; i.e., energy equipartition is quickly
attained if the energy is large enough. A long debate then
followed �3–7� concerning the questions �still unanswered�
whether the phenomenon persists in the “thermodynamic
limit” �i.e., when the number N of particles and the energy E
both grow to infinity with a finite value of the specific energy
�=E /N� and whether it can be interpreted in a metastability
perspective �8,9�. Another still open problem is whether the
phenomenon persists when the dimensions are increased,
passing from a chain of particles to a two or a three-
dimensional lattice �10�.

In the present Brief Report we address a further problem:
namely whether some analog of the FPU phenomenon oc-
curs if, instead of taking some very special initial data, one
looks at the problem of the approach to equilibrium from the
viewpoint of ergodic theory, in which one considers in prin-
ciple all initial data, weighted with the microcanonical mea-
sure �see also �11–13��. Now, in ergodic theory it is well
known that an approach to equilibrium is guaranteed if a
system is proven to be mixing. Let us recall this. For a func-

tion f on phase space, define f�t�= f ��t, where �t is the flow
induced by a given Hamiltonian. Denote also by �·� expecta-
tion with respect to the microcanonical measure. Then, mix-
ing amounts to requiring �see �14�, theorem 9.8� that for all
�square-integrable� functions f and g the correlation

C�t� = �f�t�g�0�� − �f�t���g�0��

tends to zero as t→� So equilibrium occurs if the correla-
tions between all pairs of functions are proven to decay to
zero with increasing time.

The original FPU results, although expressed in terms of
time averages and observed only for a very special class of
initial data, suggests that, at low energies, the one-
dimensional FPU system “does not have mixing properties
up the considered time.” In the present paper we give strong
numerical indications that this is actually the case, even in
the thermodynamic limit. This is obtained by computing the
correlations of suitable functions, the averaging being per-
formed over initial data sampled out from the microcanoni-
cal ensemble through a suitable Monte Carlo method. Ac-
cording to the computations, for low enough energies the
correlations appear to relax to some positive values. This we
call an FPU-like phenomenon. Such a phenomenon seems to
suggest a positive property: namely, that the system did ac-
tually relax to some well-defined anomalous state. We leave
for further studies the questions of whether such a result
should be interpreted in a metastability perspective and
whether it persists for two- and three-dimensional lattices.

For what concerns the functions to be investigated, we
started up by following FPU and restricted our attention to
the normal-mode energies Ej�t�; i.e., we studied the autocor-
relations

Cj�t� = �Ej�t�Ej�0�� − �Ej�t���Ej�0�� .

It will be shown later, however, that a major role is played by
other related quantities, i.e., the energies E j of “packets” of
nearby modes, whose relevance was pointed out in �15� �see
also �12��.

The aurocorrelations Cj�t� of the mode energies Ej were
numerically estimated by integrating a sufficiently large
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number K of orbits �actually, K=10 000, apart from two
cases which are mentioned later� and computing at any time
the arithmetic mean of the values corresponding to the single
orbits. The single initial data were sampled out from a mi-
crocanonical ensemble at specific energy �. This was actually
implemented as follows. Each initial datum was extracted
from a Gibbs ensemble �with the quadratic part only of the
total Hamiltonian� at temperature � and was then rescaled to
let it fit the constraint H=N� �H being now the total Hamil-
tonian�. The approximation of considering just the quadratic
part in performing the sampling is due to the Gibbs distribu-
tion itself being not defined for the full Hamiltonian �as the
energy surfaces are non compact when the cubic term is
taken into account�. On the other hand, such an approxima-
tion is expected to be adequate for the case of low energies,
which is the one we are mainly concerned with.

We took the standard �-FPU Hamiltonian: namely,

H�p1, . . . pN,x1, . . . ,xN� = �
k=1

N
pk

2

2m
+ �

k=0

N

V�xk+1 − xk� ,

with x0=xN+1=0, where pk is the momentum conjugated to
the particle’s position xk and the interparticle potential is
V�r�=r2 /2+�r3 /3. Units were so chosen that m=1 and �
=1/4. The integrations were performed with the standard
leapfrog �or Verlet� method, with tipical step 0.05.

The analog of the FPU phenomenon �together with its
disappearing at high energies� is exhibited in Fig. 1, where
the normalized autocorrelation functions Cj�t� /Cj�0� of the
mode energies Ej are plotted versus time for some selected
values of j, with N=511 and a sample of 10 000 initial data.
The left and bottom panels correspond to a case of a “high”
specific energy and to a case of a “low” specific energy,
respectively, precisely, �=3.16�10−2 and �=3.16�10−3. It
is seen that in the case of a high energy all autocorrelations
decay to zero essentially within the same characteristic time,
of the order of 105. In the case of a low energy, instead, the
decay to zero occurs only for some modes �with a character-
istic time of the same order of magnitude as in the previous
case�, whereas for the remaining modes the autocorrelations
appear to have relaxed within that time to some asymptotic
nonvanishing values c*�j�. Quantitatively, the value of c*�j�
is defined as a value ot the autocorrelation that remains
roughly constant over a factor of the order of 10 in time.

The natural question then arises of understanding whether
there is any regularity in the distribution of the asymptotic
values among the modes. We found the interesting result that
the relevant parameter is the mode number j /N �which is a
monotonic increasing function of the corresponding fre-
quency � j�. This is illustrated in Fig. 2, where the asymptotic
values c* of the normalized autocorrelations are plotted ver-
sus j /N. The figure refers to the same values of �, N and K
�number of initial data� as in the bottom panel of Fig. 1. The
first interesting feature is that the data appear to lie on some
smooth curve. Moreover, the shape of the curve shows that
the low-j modes �i.e., the low-frequency ones� are the ones
that exhibit a quick relaxation to the “final” expected value 0,
while the high-frequency modes remain “frozen” near the
initial value 1. The phenomenon of a freezing of the high-

frequency modes is rather well understood in the frame of
Hamiltonian perturbation theory, even in the thermodynamic
limit �see �16��. However, the applicability of the known
theorems to the present case is not straightforward, due to the
present choice of initial conditions, so that the problem de-
serves further theoretical consideration. For a review con-
cerning excitations of low-frequency modes, see �5�.

One should notice that it is precisely by looking at the
correlations that the frequency can be found to play any role,
because the microcanonical expectations of the energies are
instead all equal �equipartition�. On the other hand, as the
correlations are well known to play a major role in thermo-
dynamics according to the fluctuation-dissipation theorem,
one may conjecture that the anomalous behavior discussed
here might be of physical interest—for example, for some
phenomena of anomalous decay observed in recent experi-
ments �see �17��.

We come now to the dependence of the function c*�j� on
the specific energy �. The curve is expected to reduce to the
straight lines c*=0 and c*=1 for large and small values of �,
respectively. We found the interesting result that, for a fixed
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FIG. 1. The normalized autocorrelation function Cj�t� /Cj�0� of
the mode energies Ej versus time for some selected values of j �j
=16k, k=0, . . . ,32� and N=511 at two values of the specific energy
�. Top panel �=3.16�10−2, bottom panel �=3.16�10−3.
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N, the curve is a function of only one variable; precisely, one
has c*�j ,��= f�j /���. This is illustrated in Fig. 3, where, still
for N=511, c* is plotted versus �j /N� /�� for three values of
�: namely, �=3.16�10−3, 1.0�10−3, and 3.16�10−4. A
rather good superposition of the curves seems to be ob-
served. In particular notice that, with increasing �, the do-
main of the curve shrinks to the left, so that c* is found to
approach the value zero. Thus for large � one has a complete
decay to zero of the correlations, i.e., an analog of the
Izrailev-Chirikov phenomenon. Notice that for each � the
asymptotic values c*�j� had to be evaluated at a suitable
time, as explained previously. Such a relaxation time was
found to increase as 1/� with decreasing �.

The last point we address concerns the dependence of the
results on the number N of particles. This is a quite delicate
matter, on which we feel we got an interesting result. To

begin with we point out that, if one takes a naive approach
and plots the curves analogous to that of Fig. 2 for increasing
values of N, the curves are found to collapse towards the
trivial one c*=0. This is shown in Fig. 4, top panel, where
the curves for N=511,1023,2047,4095 are reported, for the
same � as in Fig. 2. Concerning the number K of initial data,
this had forcedly to be diminished with increasing N, and we
had to pass from K=10 000 for N=511 and 1023 to K
=5000 and 2000 for N=2047 and 4095, respectively. This,
by the way, explains the broadening of the “curves” for the
two large values of N.

It would, however, be incorrect to infer from such a col-
lapse that mixing occurs in the thermodynamic limit, because
mixing requires the decaying to zero of the correlations for
all pairs of functions. Instead, a decay to positive values is
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FIG. 2. The “asymptotic values” c*�j� of the normalized auto-
correlation functions Cj�t� /Cj�0� versus j /N for the same param-
eters of Fig. 1: namely N=511 and �=3.16�10−3.
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FIG. 3. The “asymptotic values” c*�j� of the normalized auto-
correlation functions Cj�t� /Cj�0�, versus j

N /��, for N=511 and �
=3.16�10−3, 1.0�10−3, and 3.16�10−4.
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FIG. 4. The “asymptotic values” c*�j� of the normalized auto-
correlation functions for the mode energies Ej �top panel� and for
the energies E j of packets of n nearby modes with n proportional to
N �bottom panel� for an increasing number N of particles. The value
of � is the same as in Fig. 2. The asymptotic value c*�j� is plotted in
the top panel versus j /N for j=1, . . . ,N and in the bottom panel
versus j /N0 for j=0, . . . ,N0−1, with N0=511. In the inset of the
bottom panel, for each of the four series of data the corresponding
“moving averages” �over eleven points� are plotted.
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observed if a suitable choice is made for the functions to be
tested for autocorrelation. Actually, instead of considering
the energies Ej of the single modes, we considered the ener-
gies of packets of n nearby modes, with n proportional to
N—precisely, the N0 quantities

E j = �
k=nj+1

n�j+1�

Ek, where n =
N + 1

N0 + 1
, N0 = 511,

for j=0,1 , . . . ,N0−1. In Fig. 4, bottom panel, the analog of
c* for the quantities E j is plotted versus j /N0 for the same
numbers N and K as in the top panel. It is true that the

different curves do not superpose and that a certain decreas-
ing is observed, especially in passing from N=511 to N
=1023. But for larger values of N the results seem to indicate
that a nontrivial limit curve is being approached. This is
better illustrated in the inset, where, in order to improve the
readability of the graphs, the data were smoothed out by a
standard “moving averaging” with 11 points. In our opinion,
the results suggest that the FPU-type phenomenon discussed
here may persist in the thermodynamic limit for a one-
dimensional chain—and this, not for very special initial data,
but in a global sense involving an averaging over all initial
data, in a microcanonical setting.

�1� E. Fermi, J. Pasta, and S. Ulam, in E. Fermi Collected Papers,
edited by E. Segre �The University Chicago Press, Chicago,
1965�, Vol. 2, pp. 977–988.

�2� F. Izrailev and B. Chirikov, Sov. Phys. Dokl. 11, 30 �1966�.
�3� G. P. Berman and F. M. Izrailev, Chaos 15, 015104 �2005�.
�4� A. Carati, L. Galgani, and A. Giorgilli, Chaos 15, 015105

�2005�.
�5� M. Pettini, L. Casetti, M. Cerruti-Sola, R. Franzosi, and E. G.

D. Cohen, Chaos 15, 015106 �2005�.
�6� A. J. Lichtenberg, V. V. Mirnov, and C. Day, Chaos 15,

015109 �2005�.
�7� D. Bambusi and A. Ponno, Commun. Math. Phys. 264, 539

�2006�.
�8� F. Fucito, F. Marchesoni, E. Marinari, G. Parisi, L. Peliti, S.

Ruffo, and A. Vulpiani, J. Phys. �Paris� 43, 707 �1982�.
�9� L. Berchialla, L. Galgani, and A. Giorgilli, Discrete Contin.

Dyn. Syst. 11, 855 �2004�.
�10� G. Benettin, Chaos 15, 015108 �2005�.
�11� R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani, J. Stat. Phys.

48, 539 �1987�.
�12� G. Marcelli and A. Tenenbaum, Phys. Rev. E 68, 041112

�2003�.
�13� A. Carati and L. Galgani, Europhys. Lett. 75, 528 �2006�.
�14� V. I. Arnold and A. Avez, Problèmes ergodiques de la méca-

nique classique, Monographies Internationales de Mathéma-
tiques Modernes, No. 9 �Gauthier-Villars, Éditeur, Paris,
1967�.

�15� H. Kantz, R. Livi, and S. Ruffo, J. Stat. Phys. 76, 627 �1994�.
�16� A. Carati, J. Stat. Phys. �to be published�.
�17� L. S. Schulman, E. Mihóková, A. Scardicchio, P. Facchi, M.

Nikl, K. Polák, and B. Gaveau, Phys. Rev. Lett. 88, 224101
�2002�.

BRIEF REPORTS PHYSICAL REVIEW E 76, 022104 �2007�

022104-4


